This tutorial covers material encountered in chapter 1 of the VCE Mathematical Methods Textbook, namely:
- The domain and range of basic relations/functions
- The maximal domain of a function
- The sum and product of functions
- Compositions of functions
- Inverses of functions
- Basic power functions
Q1 – Domain and Range of Function and Relation
Q2 – Domain and Range of Function and Inverse
Q3 – Maximal Domains of Functions
Q4, 5 & 6 – Sum, Product, Inverses and Compositions of Functions
Worksheet
Q1. For each of the following relations state the implied domain and range:
(a) \(f(x)=x^2 + 3\)
(b) \(f(x)=3x-2\)
(c) \(\{(x,y):x^2+y^2=9\}\)
(d) \(\{(x,y):y\geq2x+1\}\)
Q2. For the function \(g:[0,5] \to \R ,\,g(x)=\dfrac{x-4}{5}\)
(a) State the range of \(g\).
(b) Find \(g^{-1}\), and state the domain and range of \(g^{-1}\).
(c) Find \(\{x:g(x)=2\}\)
(d) Find \(\{x:g^{-1}(x)=4\}\)
Q3. Find the implied domain for each of the following:
(a) \(f(x)=\dfrac{1}{3x-1}\)
(b) \(g(x)=\dfrac{1}{\sqrt{x^2-9}}\)
(c) \(h(x)=\dfrac{1}{(x+3)(x-2)}\)
(d) \(j(x)=\sqrt{9-x^2}\)
Q4. For \(f(x)=(x-2)^2\) and \(g(x) = x + 4\), find \((f + g)(x)\) and \((fg)(x)\)
Q5. Find the inverse of each of the following functions:
(a) \(f: \R \to \R,\,f(x)=x^3\)
(b) \(f: (-\infty,0]\to\R,\,f(x)=2x^5\)
(c) \(f:(1,\infty)\to\R,\,f(x)=10000x^4\)
Q6. For \(f(x) = 3x + 1\) and \(g(x) = x^3 + 1\), find:
(a) \(f\circ g(x)\)
(b) \(g\circ f(x)\)
(c) \(g\circ g(x)\)
(d) \(f \circ f(x)\)
(e) \(f \circ (f+g)(x)\)
(f) \(f \circ (fg)(x)\)
Got questions? Share and ask here...