OARLY

Matrices and Linear Transformations [Video Tutorial]

This tutorial covers material encountered in chapters 2 and 3 of the VCE Mathematical Methods Textbook, namely:

  • Simultaneous equations
  • Matrices and their components
  • Algebra of matrices
  • Linear transformations of functions
  • Linear transformations via matrices

Q1 – Algebra of Matrices

https://youtu.be/61jwpH4od5g

Q2 – Solving Simultaneous Linear Equations

https://youtu.be/4uocQT2XJwc

Q3 – Linear Transformation via Matrices

https://youtu.be/4UOwMi2GVIQ

Q5 – Transformation: Reflection, Dilation and Translation

https://youtu.be/uGeOc6VoPc0

Q6 – Combination of Transformations

https://youtu.be/PDEPrlO8tMI

Worksheet

Q1. For the matrices \(A=\begin{bmatrix} 1&2\\3&4 \end{bmatrix},\, B=\begin{bmatrix} 1&0\\-1&1 \end{bmatrix},\, C=\begin{bmatrix} 2\\2 \end{bmatrix} \) find:

(a) \(2A\)

(b) \(A+B\)

(c) \(AB\)

(d) \(BA\)

(e) \(BC\)

(f) \(2AB-3BA\)

Q2. Solve the following simultaneous linear equations (A real parameter may be necessary):

(a) \(\begin{cases} 3x+5y+2z=8 \\ -3x-5y-4z=16 \end{cases}\)

(b) \(\begin{cases} 2x-z+3y=9 \\3x+z=3 \end{cases}\)

Q3. Consider the transformation \( T:\R^2 \to \R^2\) defined by:

\(T\left(\begin{bmatrix} x\\y \end{bmatrix}\right)=\begin{bmatrix} 1&0\\0&-3 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} -2\\3 \end{bmatrix} \)

Find the image of the functions \(f(x)=x^2\) and \(g(x)=3\sqrt{x-2}+2\) under this transformation.

Q4. If the function \(f:\R\to\R\) has the form

\(f(x)=\dfrac{a}{x}+b,\,\,a,b\in\R\)

and passes through the points \((2,-1)\) and \((4,4)\) find \(a\) and \(b\).

Q5. Find the rule for the image of the graph \(y=e^x\) under the following sequence of transformations:

(i) reflection in the x-axis.

(ii) dilation by factor 3 from the y-axis.

(iii) translation of 2 units in the negative x-axis and 3 units in the positive y-axis.

Q6. Find a sequence of transformations that takes the graph of \(y=3(x-1)^3+5\) to the graph of \(y=x^3\)

Got questions? Share and ask here...